无心睡眠 无心睡眠

Hexo,NexT,Blog - JiaMian - 银河街角,时光路口

目录
SnowFlake-雪花算法
/  

SnowFlake-雪花算法 置顶!

Twitter的SnowFlake是经典的一种生成分布式id生成算法

最初Twitter把存储系统从MySQL迁移到Cassandra(由Facebook开发一套开源分布式NoSQL数据库系统)因为Cassandra没有顺序ID生成机制,所以开发了这样一套全局唯ID生成服务。

ID生成规则部分硬性要求

image.png
聊聊集群高并发情况下保证分布式唯一全局id生成的一般通用方案

  • 自增ID:数据库自增ID和mysql数据库的replace into实现的。对于数据敏感场景不宜使用,且不适合于分布式场景。
  • GUID:采用无意义字符串,数据量增大时造成访问过慢,且不宜排序。
  • 基于Redis生成全局id策略:Redis是单线的天生保证原子性,可以使用原子操作INCR和INCRBY来实现,注意:在Redis集群情况下,同样和MySQL一样需要设置不同的增长步长,同时key一定要设置有效期。

算法原理

SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图:
image.png
Twitter的分布式雪花算法SnowFlake,经测试snowflake每秒能够产生26万个自增可排序的ID
1、SnowFlake生成ID能够按照时间有序生成
2、SnowFlake算法生成id的结果是一个64bit大小的整数,为一个Long型(转换成字符串后长度最多19)
3、分布式系统内不会产生ID碰撞(由datacenter和lworkerld作区分)并且效率较高。
java雪花算法:

public class SnowflakeIdWorker {
 // ==============================Fields==================
    /** 开始时间截 (2019-08-06) */
    private final long twepoch = 1565020800000L;
 
    /** 机器id所占的位数 */
    private final long workerIdBits = 5L;
 
    /** 数据标识id所占的位数 */
    private final long datacenterIdBits = 5L;
 
    /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
    private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
 
    /** 支持的最大数据标识id,结果是31 */
    private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
 
    /** 序列在id中占的位数 */
    private final long sequenceBits = 12L;
 
    /** 机器ID向左移12位 */
    private final long workerIdShift = sequenceBits;
 
    /** 数据标识id向左移17位(12+5) */
    private final long datacenterIdShift = sequenceBits + workerIdBits;
 
    /** 时间截向左移22位(5+5+12) */
    private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
 
    /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
    private final long sequenceMask = -1L ^ (-1L << sequenceBits);
 
    /** 工作机器ID(0~31) */
    private long workerId;
 
    /** 数据中心ID(0~31) */
    private long datacenterId;
 
    /** 毫秒内序列(0~4095) */
    private long sequence = 0L;
 
    /** 上次生成ID的时间截 */
    private long lastTimestamp = -1L;
 
     //==============================Constructors====================
    /**
     * 构造函数
     * @param workerId 工作ID (0~31)
     * @param datacenterId 数据中心ID (0~31)
     */
    public SnowflakeIdWorker(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }
 
    // ==============================Methods=================================
    /**
     * 获得下一个ID (该方法是线程安全的)
     * @return SnowflakeId
     */
    public synchronized long nextId() {
        long timestamp = timeGen();
 
        //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(
                    String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }
 
        //如果是同一时间生成的,则进行毫秒内序列
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            //毫秒内序列溢出
            if (sequence == 0) {
                //阻塞到下一个毫秒,获得新的时间戳
                timestamp = tilNextMillis(lastTimestamp);
            }
        }
        //时间戳改变,毫秒内序列重置
        else {
            sequence = 0L;
        }
 
        //上次生成ID的时间截
        lastTimestamp = timestamp;
 
        //移位并通过或运算拼到一起组成64位的ID
        return ((timestamp - twepoch) << timestampLeftShift) //
                | (datacenterId << datacenterIdShift) //
                | (workerId << workerIdShift) //
                | sequence;
    }
 
    /**
     * 阻塞到下一个毫秒,直到获得新的时间戳
     * @param lastTimestamp 上次生成ID的时间截
     * @return 当前时间戳
     */
    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }
 
    /**
     * 返回以毫秒为单位的当前时间
     * @return 当前时间(毫秒)
     */
    protected long timeGen() {
        return System.currentTimeMillis();
    }
 
    //==============================Test=============================================
    /** 测试 */
    public static void main(String[] args) {
        SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0);
        for (int i = 0; i < 10; i++) {
            long id = idWorker.nextId();
            System.out.println(Long.toBinaryString(id));
            System.out.println(id);
        }
    }
}

springboot整合雪花算法

1.新建项目snowflake
2.pom

<dependencies>
    <!--hutool 引入糊涂工具包,测试雪花算法-->
    <dependency>
        <groupId>cn.hutool</groupId>
        <artifactId>hutool-captcha</artifactId>
        <version>5.3.8</version>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-actuator</artifactId>
    </dependency>
    <dependency>
        <groupId>org.projectlombok</groupId>
        <artifactId>lombok</artifactId>
        <optional>true</optional>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-test</artifactId>
        <scope>test</scope>
    </dependency>
</dependencies>

3.util

@Slf4j
@Component
public class IdGeneratorSnowflake {
    private long workerId = 0;  //第几号机房
    private long datacenterId = 1;  //第几号机器
    private Snowflake snowflake = IdUtil.createSnowflake(workerId, datacenterId);
    @PostConstruct  //构造后开始执行,加载初始化工作
    public void init(){
        try{
            //获取本机的ip地址编码
            workerId = NetUtil.ipv4ToLong(NetUtil.getLocalhostStr());
            log.info("当前机器的workerId: " + workerId);
        }catch (Exception e){
            e.printStackTrace();
            log.warn("当前机器的workerId获取失败 ----> " + e);
            workerId = NetUtil.getLocalhostStr().hashCode();
        }
    }
    public synchronized long snowflakeId(){
        return snowflake.nextId();
    }
    public synchronized long snowflakeId(long workerId, long datacenterId){
        Snowflake snowflake = IdUtil.createSnowflake(workerId, datacenterId);
        return snowflake.nextId();
    }
    //测试
    public static void main(String[] args) {
        System.out.println(new IdGeneratorSnowflake().snowflakeId());   //1277896081711169536
    }
}

4.service

@Service
public class OrderService {
    @Autowired
    private IdGeneratorSnowflake idGenerator;
    public String getIDBySnowFlake() {
        //新建线程池(5个线程)
        ExecutorService threadPool = Executors.newFixedThreadPool(5);
        for (int i = 1; i <= 20; i++) {
            threadPool.submit(() -> {
                System.out.println(idGenerator.snowflakeId());
            });
        }
        threadPool.shutdown();
        return "hello snowflake";
    }
}

5.Controller

@RestController
public class OrderController {
    @Autowired
    private OrderService orderService;
    @RequestMapping("/snowflake")
    public String index(){
        return orderService.getIDBySnowFlake();
    }
}

6.MainApp

@SpringBootApplication
public class MainApp {
    public static void main(String[] args) {
        SpringApplication.run(MainApp.class, args);
    }
}

在这里插入图片描述

优缺点

在这里插入图片描述

解决时钟回拨问题

百度开源的分布式唯一ID生成器UidGenerator
Leaf——美团点评分布式ID生成系统


标题:SnowFlake-雪花算法
作者:无心睡眠
地址:http://jiamian.ltd/snow